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Phase separation in two-dimensional additive mixtures
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We study two-dimensional binary mixtures of parallel hard squares as well as of disks. A recent cluster
algorithm allows us to establish an entropic demixing transition between a homogeneously packed fluid phase
and a demixed phase of a practically close-packed aggregate of large squares surrounded by a fluid of small
sguares[S1063-651X99)00803-X]

PACS numbeps): 61.20.Gy, 64.75t¢g

Binary mixtures of impenetrable objects pose one of theshapes and in any dimension, and in continuous space as
important, and lively, problems of statistical physjdg. For ~ well as on the lattice. Most importantly, the method works
many years it has been discussed whether objects of differegven for objects very dissimilar in size as long as the total
types! (large ands (smal) would remain homogeneously density is not too high.
mixed as the number of these objects per unit volume in- We are able to converge our simulations of two-
creases. Particularly interesting cases concern so-called addiimensional parallel squares for total packing fractiops
tive mixtures[2], such as hard spheres with radiiandrgor =75+ 7, which do not sensibly exceed the percolating
cubes with lengthd, andds. The problem of phase separa- thresholdzc. As in three dimensiond], we notice that
tion in binary mixtures is of importance as the simplest7,erc depends very little on the ratie=ds/d;<1. We find
model for colloids. It has been a meeting ground for many»pe,c=0.5. Figures 1 and 2 show snapshots of the simula-
different theoretical, computational, and experimental apiions for 200 large squares and 20 000 small squares at equal
proaches. As an example, the well-known closure approxicomposition ¢s=#7) and total packing fractiongy=0.44
mations, as well as virial expansions, both of very great im-and »=0.60, respectively. Evidently, Fig. 1 represents a ho-
portance for the theory of simple liquids8], have been mogeneous mixture. Following the classic method of Monte
brought to bear on this problem, often with contradictoryCarlo simulation 6], we monitor the phase of the system as
results[1]. we slowly increase the total packing fraction at constant

In this paper we discuss additive systems in two dimencompositionx= 7,/ 7. At a certainy, the system becomes
sions, parallel hard squares and also hard disks. Previousstable. A compact solid of large particles appears, which is
work on the lattice version of the present system was done isurrounded by a fluid of primarily small ones. The system
[4], where no transition was found. Cue$td has studied shown in Fig. 2 consists of such a “solid” block of large
the fluid-fluid phase separation transition within the Rosen-
feld fundamental measure approximati¢id]. For hard
squares, such a transition is predicted not to o¢BlirWe
present in this paper full-scale off lattice simulations of such
systems. For hard squares, we show that instead of the fluid
fluid transition, a fluid-solid phase separation transition ap-
pears for sufficiently dissimilar sizes. For halizks we ex-
pect an analogous transition for extremely dissimilar size
that must satisfyrs/r;<<1/100 for packing fractionsy = 7,
<0.3.

Monte Carlo simulations have long been performed on
these systemgl]. They were recently boosted by a new clus-
ter algorithm[8,9], which allows thermalization of systems
orders of magnitude larger than previously possible. The al
gorithm sidesteps a problem readily apparent in Fig. 1, which
shows a typical configuration in the homogeneous phase
There, each large square is surrounded by many small ob
jects. Trial moves of large squares will, therefore, be rejected
in the overwhelming majority of cases, and the algorithm
will get stuck quickly. Our algorithm rather swaps large
patches of the configuration in a way that preserves detaile
balance[8-10]. The algorithm is applicable for arbitrary

FIG. 1. Snapshot of 200 big squaregi£1) and 20 000 small
*Electronic address: buhot@physique.ens.fr squares ¢;=0.1) in a periodically continued box of size 8330
TElectronic address: krauth@physique.ens.fr (packing fractionsy, = s=0.22).
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FIG. 3. Phases of the two-dimensional hard square system at
equal compositionps= 7, (total packing fractionp= 7s+ 7, vs. R
=ds/d;). The squares locate the parameters of the snapshots in
Figs. 1 and 2. The region in which our algorithm performs excel-
lently is shaded in gray.

squares surrounded by a fluid of small squares. In our opir@n the usual pair correlation functidd]. In Fig. 4, one can

ion, these runs present direct evidence for a transition of thé€€ that the mixed systemG, has pulled away from the
homogeneously mixed fluid into @olid-fluid) phase. pure system’s correlation function on all scales, showing that

In the simulations aty=0.60, we have slightly exceeded the large sca_le structure of _the_ flui_d has chfanged. Th_e stair-
the percolation thresholdy,e,c. Therefore, the algorithm case pattern is a very c_Iear indication of solid ordgr. Finally,
will swap patches, which usually comprise almost the whole_the rathe_r Iarg(_a finite-size effects at large separation are eas-
system. This generates problems for large systems, and Wi €xplained sinceG, (r) has to meet the curve of the cor-
have, e.g., been unable to converge 7=0.60) a sample respondlng' m'onodlsper_se system with 7, for half the _box '
with N,=800, N.=80000. In contrast, the simulations at !ength. A S|_m|Iar analysis was used to establish the instabil-
lower packing fractions converge extremely rapidly for arbi-1y line in Fig. 3.
trary system size. We can summarize the situation for equal T T T
composition ;= 7,) by the diagram of Fig. 3: The gray
area corresponds to the region of the diagram in which our Gy Ny=50
algorithm performs extremely well. As mentioned, this re- —Np= 200
gion is delimited for the homogeneous system by the perco- | =7 pure case
lation threshold and by the appearance of high-density areas 0T ey
as a consequence of phase separation. We also studied the s
instability line as a function of the composition where we I
find that the critical packing fraction increases with the com- s
position [ 7¢;=0.49+0.02 (x=0.3), 0.53-0.02 (x=0.5) 100 P ]
and 0.66:0.05 (x=0.7) forR=0.1]. 4

In our three-dimensional simulatid8], it was impossible
to interpret the data by direct inspection, as in Fig. 1 and Fig.
2. We analyzed the transition, therefore, with the help of the
integrated pair correlation function Gy (r)
=4ap fr'dr'g,(r’) with pj=N,/V the density of large
particles[3]. We repeat the analysis in the two-dimensional ok
case in order to stress the soundness of our procedure, which ! ! L ! L gy
considersG,, rather than the much noisiey, .G, (r) deter- 1 4 7 10 137

mines the average number of large particles around a given g 4. Integrated two-point correlation functions for the dense
large particle within a distance. For the special case of system = 7s=0.30 (cf. Fig. 2 for 50 and 200 large squares,
parallel hard squares, we define max@x,Ay), where Ax respectively.G (r) directly counts the average number of large
andAy are the twa(periodically continuefllateral distances. particles in a square of lengtir Zround a given large particle. The
With this definition, the distance of two large squares intwo curves are compared to the monodisperse system’s correlation
contact isr =d; and Gy, = py [ max(x|,ly))<r9n (X,y)dxdy with  function.

FIG. 2. Snapshot of 200 big squarati£1) and 20 000 small
squares ¢,=0.1) in a periodically continued box of size 2@6
(packing fractionsy, = 7s=0.30).
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A comparison of Fig. 4 with the data for the homoge- ASgquars= 750 /ds. D
neous mixturdcf. Fig. 1) at »=0.44 is very revealing. In the
latter casenot shown, the difference between the mixed and Repeating the same calculation for disks, we notice, of

the monodisperse system concerns mainly the region foyrse, that the overlap of excluded volud¥ g~ r3r,

small separation between the squares and would be unoBnq the number of concerned small disks are much smaller.
servable on the scale of Fig. 4. The same observation Wagis |eads to

made in three dimensions. The effects at small separations
are already detectable by visual inspection of Fig. 1, since AS

: . . : isk™ s\ T s 2
there are quite many “bound” pairs and triplets. We find disk™ 7s\T1 s @

that each large square has bound an average of 0.8 squarefg order-of-magnitude argument tells us thatth a hard
This agrees very nicely with our observation in three dimen-Square transition ad,/d,~1/10 for »=0.5) we can expect
sions, where we noticed the onset of the phase-separati% analogous trans?tion for disks at best fgir,~1/100
instability as the additional binding was close to one. ! '

: . g . Accordingly, our simulations forr¢/r;=1/100 at »=0.6
We also performed simulations for mixtures of hetisks have revealed no instability of the homogeneous phase. Even

Let us begin our discussion with an indirect heuristic argu-Iarger simulations at ,/r,=1/150 (50 large and 1125000

ment, which connects transition parameters for squares ansma” disks,7=0.6) did not converge, even though the ad-

for disks (it supposes that the same type of transition ap-,... S . ; .
ditional binding has continuously increased in the course of a
pears. It has long been understod@] that the overlap of . . X . )
. month-long simulation. In these simulations, the effective
excluded volumes entropically favors close contact of thede letion potential between two larae disks is very stron
large objects. The excluded volumir a small square P P 9 y 9.

. S hut also extremely short-ranged. The Monte Carlo simulation
around a big square consists in the area of the latter and o » . . o
X : N : of such “golf-course” potentials, where the interaction is
strip of width d¢/2 around it. Side-to-side contact between : 2 ; .
felt in a tiny interval only, is of course extremely timecon-
two squares leads to an overlap of excluded volume of the

. n : Suming and often impossible.
size Avsquafe thXds. As the Iarge objects touch, the \./0|' In conclusion we have studied the problem of phase sepa-
ume available to the small particles and therefore their en-

. _ration of two-dimensional system#ard squares and hard
%iisks) by direct Monte Carlo simulation. For hard squares,

decreases their contribution to the entropy of the completeour Monte Carlo data leave little room to doubt a direct fluid

system. The phase-separation transition appears when thot e(solid fluid) transition. For hard disks, the stability of the

two contributions compensate each other. As the decrease Rbmogeneous mixture seems established for any “reason-
entropy due to contact of large objects may be considered %ble” ratio of radii r¢/r;=1/100. Our heuristic argument

independent of the ratiR of the size of the small and large -
. . would, however, lead us to expect a transition for even more
objects and of the shape of objects, we may compare th treme ratios

increase of entropy due to larger available volume for smal
disks or squares. In fact, since the small particles’ contribu-
tion to the entropy iS~N¢InV, (with V, the available vol-
ume), one findsA S~ (Ng/V)AVquare and, therefore,
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[1] J. L. Lebowitz and J. S. Rowlinson, J. Chem. Ph4%. 133
(19649; T. Biben and J. P. Hansen, Phys. Rev. L66,. 2215
(1992); T. Coussaert and M. Bauiid. 79, 1881(1997); 80,
4832E) (1998.

S. S. Challa, D. P. Landau, and K. Bindejd. 34, 1841
(1986.

[7] Y. Rosenfeld, J. Chem. Phy89, 4272 (1988; Phys. Rev.

Lett. 63, 980(1989; Phys. Rev. E50, R3318(1994.

[2] S. Asakura and F. Oosawa, J. Chem. PIa%.1255(1954).
[3] J. P. Hansen and I. R. Macdonaltheory of Simple Liquids
2nd ed.(Academic, London, 1986

[8] C. Dress and W. Krauth, J. Phys. 28, L597 (1995.
[9] A. Buhot and W. Krauth, Phys. Rev. Le80, 3787(1998.
[10] For a pedagogical discussion, cf. H. Gould, J. Tobochnik, and

[4] M. Dijkstra, D. Frenkel, and J. P. Hansen, J. Chem. Ph§4.
3179(1994); M. Dijkstra and D. Frenkel, Phys. Rev. Le#2,
298 (1994.

[5] J. A. Cuesta, Phys. Rev. Leit6, 3742(1996.

[6] K. Binder and D. P. Landau, Phys. Rev3B, 1477(1984; M.

L. Colonna-Romano, Comput. Phykl, 157 (1997; A suc-
cessful application in a three-dimensional lattice gas model
was presented in J. R. Heringa and H. W. J.tBl?Physica A
232 369 (1996.



