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Phase separation in two-dimensional additive mixtures
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We study two-dimensional binary mixtures of parallel hard squares as well as of disks. A recent cluster
algorithm allows us to establish an entropic demixing transition between a homogeneously packed fluid phase
and a demixed phase of a practically close-packed aggregate of large squares surrounded by a fluid of small
squares.@S1063-651X~99!00803-X#
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Binary mixtures of impenetrable objects pose one of
important, and lively, problems of statistical physics@1#. For
many years it has been discussed whether objects of diffe
types l ~large! and s ~small! would remain homogeneousl
mixed as the number of these objects per unit volume
creases. Particularly interesting cases concern so-called
tive mixtures@2#, such as hard spheres with radiir l andr s or
cubes with lengthdl andds . The problem of phase separ
tion in binary mixtures is of importance as the simple
model for colloids. It has been a meeting ground for ma
different theoretical, computational, and experimental
proaches. As an example, the well-known closure appr
mations, as well as virial expansions, both of very great
portance for the theory of simple liquids@3#, have been
brought to bear on this problem, often with contradicto
results@1#.

In this paper we discuss additive systems in two dim
sions, parallel hard squares and also hard disks. Prev
work on the lattice version of the present system was don
@4#, where no transition was found. Cuesta@5# has studied
the fluid-fluid phase separation transition within the Ros
feld fundamental measure approximation@7#. For hard
squares, such a transition is predicted not to occur@5#. We
present in this paper full-scale off lattice simulations of su
systems. For hard squares, we show that instead of the fl
fluid transition, a fluid-solid phase separation transition
pears for sufficiently dissimilar sizes. For harddisks, we ex-
pect an analogous transition for extremely dissimilar si
that must satisfyr s /r l,1/100 for packing fractionsh l5hs
,0.3.

Monte Carlo simulations have long been performed
these systems@4#. They were recently boosted by a new clu
ter algorithm@8,9#, which allows thermalization of system
orders of magnitude larger than previously possible. The
gorithm sidesteps a problem readily apparent in Fig. 1, wh
shows a typical configuration in the homogeneous pha
There, each large square is surrounded by many small
jects. Trial moves of large squares will, therefore, be rejec
in the overwhelming majority of cases, and the algorith
will get stuck quickly. Our algorithm rather swaps larg
patches of the configuration in a way that preserves deta
balance@8–10#. The algorithm is applicable for arbitrar
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shapes and in any dimension, and in continuous spac
well as on the lattice. Most importantly, the method wor
even for objects very dissimilar in size as long as the to
density is not too high.

We are able to converge our simulations of tw
dimensional parallel squares for total packing fractionsh
5hs1h l , which do not sensibly exceed the percolati
thresholdhperc . As in three dimensions@9#, we notice that
hperc depends very little on the ratioR5ds /dl<1. We find
hperc.0.5. Figures 1 and 2 show snapshots of the simu
tions for 200 large squares and 20 000 small squares at e
composition (hs5h l) and total packing fractionsh50.44
andh50.60, respectively. Evidently, Fig. 1 represents a h
mogeneous mixture. Following the classic method of Mo
Carlo simulation@6#, we monitor the phase of the system
we slowly increase the total packing fraction at const
compositionx5h l /h. At a certainh, the system become
unstable. A compact solid of large particles appears, whic
surrounded by a fluid of primarily small ones. The syste
shown in Fig. 2 consists of such a ‘‘solid’’ block of larg

FIG. 1. Snapshot of 200 big squares (dl51) and 20 000 small
squares (ds50.1) in a periodically continued box of size 30330
~packing fractionsh l5hs50.22).
2939 ©1999 The American Physical Society



pi
th

d

ol

at
bi
u

y
ou
e
rc
re
d
e

m

ig
th

a
h

iv
f

.
in

hat
tair-
lly,
eas-
r-

bil-

at

ts in
el-

se
,
e

e
ation

2940 PRE 59ARNAUD BUHOT AND WERNER KRAUTH
squares surrounded by a fluid of small squares. In our o
ion, these runs present direct evidence for a transition of
homogeneously mixed fluid into a~solid-fluid! phase.

In the simulations ath50.60, we have slightly exceede
the percolation thresholdhperc . Therefore, the algorithm
will swap patches, which usually comprise almost the wh
system. This generates problems for large systems, and
have, e.g., been unable to converge~at h50.60) a sample
with Nl5800, Ns580 000. In contrast, the simulations
lower packing fractions converge extremely rapidly for ar
trary system size. We can summarize the situation for eq
composition (hs5h l) by the diagram of Fig. 3: The gra
area corresponds to the region of the diagram in which
algorithm performs extremely well. As mentioned, this r
gion is delimited for the homogeneous system by the pe
lation threshold and by the appearance of high-density a
as a consequence of phase separation. We also studie
instability line as a function of the composition where w
find that the critical packing fraction increases with the co
position @hcrit50.4960.02 (x50.3), 0.5360.02 (x50.5)
and 0.6060.05 (x50.7) for R50.1].

In our three-dimensional simulation@9#, it was impossible
to interpret the data by direct inspection, as in Fig. 1 and F
2. We analyzed the transition, therefore, with the help of
integrated pair correlation function Gll (r )
54pr l*r 8dr8gll (r 8) with r l5Nl /V the density of large
particles@3#. We repeat the analysis in the two-dimension
case in order to stress the soundness of our procedure, w
considersGll rather than the much noisiergll .Gll (r ) deter-
mines the average number of large particles around a g
large particle within a distancer. For the special case o
parallel hard squares, we definer 5max(Dx,Dy), whereDx
andDy are the two~periodically continued! lateral distances
With this definition, the distance of two large squares
contact isr 5dl and Gll 5r l*max(uxu,uyu),rgll (x,y)dxdy with

FIG. 2. Snapshot of 200 big squares (dl51) and 20 000 small
squares (d250.1) in a periodically continued box of size 26326
~packing fractionsh l5hs50.30).
n-
e

e
we

-
al

r
-
o-
as
the

-

.
e

l
ich

en

gll the usual pair correlation function@3#. In Fig. 4, one can
see that the mixed system’sGll has pulled away from the
pure system’s correlation function on all scales, showing t
the large scale structure of the fluid has changed. The s
case pattern is a very clear indication of solid order. Fina
the rather large finite-size effects at large separation are
ily explained sinceGll (r ) has to meet the curve of the co
responding monodisperse system withh5h l for half the box
length. A similar analysis was used to establish the insta
ity line in Fig. 3.

FIG. 3. Phases of the two-dimensional hard square system
equal compositionhs5h l ~total packing fractionh5hs1h l vs. R
5ds /dl). The squares locate the parameters of the snapsho
Figs. 1 and 2. The region in which our algorithm performs exc
lently is shaded in gray.

FIG. 4. Integrated two-point correlation functions for the den
systemh l5hs50.30 ~cf. Fig. 2! for 50 and 200 large squares
respectively.Gll (r ) directly counts the average number of larg
particles in a square of length 2r around a given large particle. Th
two curves are compared to the monodisperse system’s correl
function.
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A comparison of Fig. 4 with the data for the homog
neous mixture~cf. Fig. 1! at h50.44 is very revealing. In the
latter case~not shown!, the difference between the mixed an
the monodisperse system concerns mainly the region
small separation between the squares and would be u
servable on the scale of Fig. 4. The same observation
made in three dimensions. The effects at small separatior
are already detectable by visual inspection of Fig. 1, si
there are quite many ‘‘bound’’ pairs and triplets. We fin
that each large square has bound an average of 0.8 squ
This agrees very nicely with our observation in three dim
sions, where we noticed the onset of the phase-separa
instability as the additional binding was close to one.

We also performed simulations for mixtures of harddisks.
Let us begin our discussion with an indirect heuristic arg
ment, which connects transition parameters for squares
for disks ~it supposes that the same type of transition
pears!. It has long been understood@2# that the overlap of
excluded volumes entropically favors close contact of
large objects. The excluded volume~for a small square!
around a big square consists in the area of the latter a
strip of width ds/2 around it. Side-to-side contact betwe
two squares leads to an overlap of excluded volume of
size DVsquare;dl3ds . As the large objects touch, the vo
ume available to the small particles and therefore their
tropy increase. At the same time, contact of large obje
decreases their contribution to the entropy of the compl
system. The phase-separation transition appears when
two contributions compensate each other. As the decreas
entropy due to contact of large objects may be considere
independent of the ratioR of the size of the small and larg
objects and of the shape of objects, we may compare
increase of entropy due to larger available volume for sm
disks or squares. In fact, since the small particles’ contri
tion to the entropy isS;Ns ln Vs ~with Vs the available vol-
ume!, one findsDS;(Ns /V)DVsquare, and, therefore,
of
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DSsquare;hsdl /ds . ~1!

Repeating the same calculation for disks, we notice,
course, that the overlap of excluded volumeDVdisk;Ar s

3r l

and the number of concerned small disks are much sma
This leads to

DSdisk;hsAr l /r s. ~2!

This order-of-magnitude argument tells us that~with a hard
square transition atds /dl;1/10 for h.0.5) we can expect
an analogous transition for disks at best forr s /r l;1/100.
Accordingly, our simulations forr s /r l*1/100 at h50.6
have revealed no instability of the homogeneous phase. E
larger simulations atr s /r l51/150 ~50 large and 1 125 000
small disks,h50.6) did not converge, even though the a
ditional binding has continuously increased in the course o
month-long simulation. In these simulations, the effect
depletion potential between two large disks is very stro
but also extremely short-ranged. The Monte Carlo simulat
of such ‘‘golf-course’’ potentials, where the interaction
felt in a tiny interval only, is of course extremely timecon
suming and often impossible.

In conclusion we have studied the problem of phase se
ration of two-dimensional systems~hard squares and har
disks! by direct Monte Carlo simulation. For hard square
our Monte Carlo data leave little room to doubt a direct flu
to ~solid fluid! transition. For hard disks, the stability of th
homogeneous mixture seems established for any ‘‘reas
able’’ ratio of radii r s /r l*1/100. Our heuristic argumen
would, however, lead us to expect a transition for even m
extreme ratios.
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